Aníversíty of Alumbaí

Syllabus for

Honours/Minor Degree Program

In

Artificial Intelligence and Machine Learning

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2022-2023)

					versity					
	А	rtific		-	e and N effect fr			_	(AI&ML)	
		Теас	hing Scher / Week			xamina	Credit Scheme			
Year & Sem	Course Code & Course Title	Theory	Seminar / Tutorial	Practical	Internal Assessment	End Sem Exam	Term Work	Oral	Total	Credits
TE Sem V	HAIMLC501: Mathematics for AI & ML	04			20	80			100	04
	Total	04	-		100	-	-		100	04
									<u>т</u>	otal Credits = 04
TE Sem VI	HAIMLC601: Game Theory using AI & ML	04			20	80			100	04
	Total	04	-	-	100	-	-		100	04
				•	•		•		T	otal Credits = 04
BE Sem VII	HAIMLC701: AI&ML in Healthcare	04			20	80			100	04
	HAIMLSBL701: AI&ML in Healthcare: Lab			04			50	50	100	02
	Total	04	-	04	10	0	50	50	200	06
									T	otal Credits = 06
BE Sem VIII	HAIMLC801: Text, Web and Social Media Analytics	04	-		20	80			100	04
	Total	04	-	-	100	·	-	-	100	04
									T	otal Credits = 04
	То	tal Cr	edits for S	Semest	ers V,VI,	VII & V	/111 = 0	4+04+0	6+04 = 18	

	Artificial Intelligence and Machine Learning: Sem V										
Course	Course	Teachin	Teaching Scheme (Contact Credits Assigned								
Code	Name		Hours)								
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
HAIMLC501	Mathematics for AI&ML	04			04			04			

Course	Course				Examination Scheme						
Code	Name	Theory Marks		Theory Marks		Exam	Term	Practical	Total		
			Assess	ment	End	Duration	Work	and			
		Test1	Test2	Avg.	Sem. Exam.	In Hours		Oral			
					Exam.						
HAIMLC501	Mathematics for AI&ML	20	20	20	80	03			100		

Co	ourse Prerequisites:							
Ap	oplied Mathematics, Discrete mathematics							
Co	Course Objectives:							
1	To build an intuitive understanding of Mathematics and relating it to Artificial Intelligence, Machine Learning							
	and Data Science.							
2	To provide a strong foundation for probabilistic and statistical analysis mostly used in varied applications in							
	Engineering.							
3	To focus on exploring the data with the help of graphical representation and drawing conclusions.							
4	To explore optimization and dimensionality reduction techniques.							
Co	ourse Outcomes:							
Af	ter successful completion of the course, the student will be able to:							
1	Use linear algebra concepts to model, solve, and analyze real-world problems.							
2	Apply probability distributions and sampling distributions to various business problems.							
3	3 Select an appropriate graph representation for the given data.							
4	Apply exploratory data analysis to some real data sets and provide interpretations via relevant visualization							
5	Analyze various optimization techniques.							
6	Describe Dimension Reduction Algorithms							

Module		Topics	Hrs.
No.		Topics	
1.0		Linear Algebra	05
	1.1	Vectors and Matrices, Solving Linear equations, The four Fundamental Subspaces,	
		Eigenvalues and Eigen Vectors, The Singular Value Decomposition (SVD).	
2.0		Probability and Statistics	09
	2.1	Introduction, Random Variables and their probability Distribution, Random Sampling, Sample Characteristics and their Distributions, Chi-Square, t-, and F-Distributions: Exact Sampling Distributions, Sampling from a Bivariate Normal Distribution, The Central Limit Theorem.	
3.0		Introduction to Graphs	10

		Total	48
		Mapping. Minimal polynomial	
	6.2	Non-Linear Dimensionality Reduction: Multidimensional Scaling, Isometric Feature	
	0.1	Principal component analysis, Factor Analysis, Linear discriminant analysis.	
	6.1	Introduction to Dimension Reduction Algorithms, Linear Dimensionality Reduction:	
6.0		Dimension Reduction Algorithms	05
		Method.	
		Position Method, Newton's Method, Steepest Descent Method, Penalty Function	
	5.1	Optimization-Numerical Optimization, Bracketing Methods-Bisection Method, False	
5.0	5.1		10
5.0		Optimization Techniques	10
		deciding appropriate machine learning models.	
		Missing values, understand dataset through various plots and graphs, draw conclusions,	
	4.1		
4.0		Exploratory Data Analysis	09
		graph.	
		graph, Exponential graph, Logarithmic graph, Trigonometric graph, Frequency distribution	
		using Bar graph, Pie chart, Histogram, Stem and Leaf plot, Dot plot, Scatter plot, Time-series	
	0.1	data, Types of Qualitative data: Categorical data, Binary data, Ordinary data, Plotting data	
	3.1	Quantitative vs. Qualitative data, Types of Quantitative data: Continuous data, Discrete	

Text Books:

- 1 Linear Algebra for Everyone,
- 2 Gilbert Strang, Wellesley Cambridge Press.
- 3 An Introduction to Probability and Statistics, Vijay Rohatgi, Wiley Publication
- 4 An introduction to Optimization, Second Edition, Wiley-Edwin Chong, Stainslaw Zak.
- 5 Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Cambridge University Press.
- 6 Exploratory Data Analysis, John Tukey, Princeton University and Bell Laboratories.

References:

- 1 Introduction to Linear Algebra, Gilbert Strang.
- 2 Advanced Engineering Mathematics, Erwin Kreyszig
- 3 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2018.
- 4 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014
- 5 Last updated on Sep 9, 2018.
- 6 Mathematics and Programming for Machine Learning with R, William B. Claster, CRC Press, 2020

Useful Links:

- 1 https://math.mit.edu/~gs/linearalgebra/
- 2 https://www.coursera.org/learn/probability-theory-statistics
- 3 <u>https://nptel.ac.in/courses/111/105/111105090/</u>
- 4 <u>https://onlinecourses.nptel.ac.in/noc21_ma01/preview</u>
- 5 <u>https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/</u>

Assessment:

Internal Assessment: (20)

1 Assessment consists of two class tests of 20 marks each.

- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

End Semester Theory Examination: (80)

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Artificial Intelligence and Machine Learning: Sem VI										
Course Code	Course Name	Teachin	ig Scheme (Hours)	Contact	Credits Assigned						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
HAIMLC601	Game Theory using AI & ML	04			04			04			

Course	Course Name				Examination Scheme						
Code			Theo	ry Mark	S	Exam	Term	Practical	Total		
		Internal Assessment			End Sem. Exam.	Duration In Hours	Work	and Oral			
		Test1	Test2	Avg.							
HAIMLC601	Game Theory using AI & ML	20	20	20	80	03			100		

Со	ourse Prerequisites:								
Kn	owledge of probability theory, discrete mathematics, and algorithm design is required.								
Со	ourse Objectives:								
1	To acquire the knowledge of game theory.								
2	To understand the basic concept of AI, strength and weakness of problem solving and search								
3	To study about various heuristic and game search algorithms								
4	To optimize the different linear methods of regression and classification								
5	To interpret the different supervised classification methods of support vector machine.								
6	To acquire the knowledge of different generative models through unsupervised learning								
Со	ourse Outcomes:								
Af	ter successful completion of the course, the student will be able to:								
1	Understand basic concept of game theory.								
2	Evaluate Artificial Intelligence (AI) methods and describe their foundations								
3	Analyze and illustrate how search algorithms play vital role in problem solving, inference, perception,								
	knowledge representation and learning								
4	Demonstrate knowledge of reasoning and knowledge representation for solving real world problems								
5	Recognize the characteristics of machine learning that makes it useful to realworld problems and apply								
	different dimensionality reduction techniques								
6	Apply the different supervised learning methods of support vector machine and tree based models								

Module No.		Topics	Hours.
1.0		Introduction to Game Theory	05
	1.1	Introduction, The theory of rational choice, Games with Perfect Information, Nash Equilibrium: Theory, Prisoner's Dilemma, Stag Hunt, Matching pennies, BOS, Multi NE, Cooperative and Competitive Games, Strict and Non Strict NE, Best response functions for NE.	
	1.2	Nash Equilibrium: Illustrations, Cournot's model of oligopoly, Bertrand's model of oligopoly, Electoral competition, The War of Attrition, Auctions, Mixed Strategy Equilibrium, Strategic games in which players may randomize, Dominated actions, Extensive Games with Perfect Information	

2.0		Games with Imperfect Information	09
	2.1	Bayesian Games, Introduction, Motivational examples, General definitions, two	
		examples concerning information, Strictly Competitive Games and Maxminimization,	
		Rationalizability	
	2.2	Evolutionary Equilibrium, Monomorphic pure strategy equilibrium, Mixed strategies	
		and polymorphic equilibrium, Repeated games: The Prisoner's Dilemma, Infinitely	
		repeated games, Strategies, General Results,	
3.0		Introduction to AI & Problem Solving	10
	3.1	Definitions – Foundation and History of AI, Evolution of AI - Applications of AI,	
		Classification of AI systems with respect to environment. Artificial Intelligence vs	
		Machine learning,	
	3.2	Heuristic Search Techniques: Generate-and-Test; Hill Climbing; Properties of A*	
		algorithm, Best first Search; Problem Reduction.	
	3.3	Beyond Classical Search: Local search algorithms and optimization problem, local	
		search in continuous spaces, searching with nondeterministic action and partial	
		observation, online search agent and unknown environments	
4.0		Knowledge and Reasoning	09
	4.1	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order	
		Logic, situation calculus. Theorem Proving in First Order Logic, Planning, partial order	
		planning. Uncertain Knowledge and Reasoning, Probabilities,	
	4.2	Bayesian Networks. Probabilistic reasoning over time: time and uncertainty, hidden	
		Markova models, Kalman filter, dynamic bayesian network, keeping track of many	
		objects	
5.0		Introduction to ML	10
	5.1	Introduction to Machine Learning, Examples of Machine Learning Applications, Learning	
		Types, Supervised Learning -Learning a Class from Examples, Vapnik- Chervonenkis (VC)	
		Dimension, Probably Approximately Correct (PAC) Learning, Noise, Learning Multiple	
		Classes, Regression, Model Selection and Generalization, Dimensions of a Supervised	
		Machine Learning Algorithm	
	5.2		
		Methods, Logistic Regression- Fitting Logistic Regression Models,	
		Quadratic Approximations and Inference, L1 Regularized Logistic Regression,	
		SVM -Introduction to SVM, The Support Vector Classifier, Support Vector Machines and	
		Kernels- Computing the SVM for Classification	
6.0		Unsupervised Learning	05
	6.1	Introduction, Association Rules-Market Basket Analysis, The Apriori Algorithm,	
		Unsupervised as Supervised Learning, Generalized Association Rules, Cluster Analysis	
		Proximity Matrices,	
		Clustering Algorithms-K-mean, Gaussian Mixtures as Soft K-means Clustering, Example:	
		Human Tumor Microarray Data, Vector Quantization, K-medoids, Hierarchical	
		Clustering, Self-Organizing Maps, PCA-Spectral Clustering	
	6.2	Hidden Markov Models-Introduction, Discrete Markov Processes, Hidden Markov	
		Models, Three Basic Problems of HMMs, Evaluation Problem, Finding the State	
		Sequence, Learning Model Parameters, Continuous Observations, The HMM with	
		Input, Model Selection in HMM	
	1	Total	48

- 1 Martin Osborne, An Introduction to Game Theory, Oxford University Press.
- 2 Russell, S. and Norvig, P. 2015. Artificial Intelligence A Modern Approach, 3rd edition, Prentice Hall
- 3 Introduction to Machine Learning Edition 2, by Ethem Alpaydin

References:

- 1 Thomas Ferguson, Game Theory, World Scientific, 2018.
- 2 Stef Tijs. Introduction to Game Theory, Hindustan Book Agency
- 3 J. Gabriel, Artificial Intelligence: Artificial Intelligence for Humans (Artificial Intelligence, Machine Learning), Create Space Independent Publishing Platform, First edition, 2016
- 4 Introduction to Artificial Intelligence & Expert Systems, Dan W Patterson, PHI.,2010 2. S Kaushik, Artificial Intelligence, Cengage Learning, 1st ed.2011
- 5 Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

End Semester Theory Examination: (80)

- 1 Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Artificial Intelligence and Machine Learning: Sem VII										
Course Code	Course Name	Teachir	ng Scheme Hours)	(Contact	Credits Assigned						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
HAIMLC701	AI&ML in Healthcare	04			04			04			

Course Code	Course Name	Examination Scheme									
			Theory	Marks	Exam		Term	Practical and	Total		
		Internal Assessment			End	Duration	Work	Oral			
		Test1 Test2	Test2 A	Avg.	Sem. Exam.	In Hours					
HAIMLC701	AI&ML in	20	20	20	80	03			100		
	Healthcare	20	20	20	30	03			100		

Со	urse Prerequisites:					
Ar	tificial Intelligence, Machine Learning					
Со	Course Objectives: The course aims					
1	To understand the need and significance of AI and ML for Healthcare.					
2	To study advanced AI algorithms for Healthcare.					
3	To learn Computational Intelligence techniques .					
4	To understand evaluation metrics and ethics in intelligence for Healthcare systems,					
5	To learn various NLP algorithms and their application in Healthcare,					
6	To investigate the current scope, implications of AI and ML for developing futuristic Healthcare Applications.					
Со	urse Outcomes:					
Af	ter successful completion of the course, the student will be able to:					
1	Understand the role of AI and ML for handling Healthcare data.					
2	Apply Advanced AI algorithms for Healthcare Problems.					
3	Learn and Apply various Computational Intelligence techniques for Healthcare Application.					
4	Use evaluation metrics for evaluating healthcare systems.					
5	Develop NLP applications for healthcare using various NLP Techniques					
6	Apply AI and ML algorithms for building Healthcare Applications					

Module		Topics	Hours.
1.0		Introduction	04
	1.1	Overview of AI and ML,A Multifaceted Discipline, Applications of AI in Healthcare -	
		Prediction, Diagnosis, personalized treatment and behavior modification, drug	
		discovery, followup care etc,	
	1.2	Realizing potential of AI and ML in healthcare, Healthcare Data - Use Cases.	
2.0		AI, ML, Deep Learning and Data Mining Methods for Healthcare	10
	2.1	Knowledge discovery and Data Mining, ML, Multi classifier Decision Fusion, Ensemble	
		Learning, Meta-Learning and other Abstract Methods.	
	2.2	Evolutionary Algorithms, Illustrative Medical Application-Multiagent Infectious Disease	
		Propagation and Outbreak Prediction, Automated Amblyopia Screening System etc.	
	2.3	Computational Intelligence Techniques, Deep Learning, Unsupervised learning,	
		dimensionality reduction algorithms.	

3.0		Evaluating learning for Intelligence	06					
	3.1	Model development and workflow, evaluation metrics, Parameters and Hyperparameters, Hyperparameter tuning algorithms, multivariate testing, Ethics of Intelligence.						
4.0		Natural Language Processing in Healthcare	08					
	4.1	NLP tasks in Medicine, Low-level NLP components, High level NLP components, NLP Methods.						
	4.2	Clinical NLP resources and Tools, NLP Applications in Healthcare. Model Interpretability using Explainable AI for NLP applications.						
5.0		Intelligent personal Health Record						
	5.1	Introduction, Guided Search for Disease Information, Recommending SCA's.						
	Recommending HHP's , Continuous User Monitoring.							
6.0		Future of Healthcare using AI and ML						
6.0 Future of Healthcare using AI and ML 6.1 Evidence based medicine, Personalized Medicine, Connecter and Therapeutics, Conversational AI, Virtual and Augment verifying supply chain, patient record access, Robot - Assister Case Studies on use of AI and ML for Disease Risk Dia	Evidence based medicine, Personalized Medicine, Connected Medicine, Digital Health and Therapeutics, Conversational AI, Virtual and Augmented Reality, Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.							
	6.2	Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.						
		Total	48					

Textbooks:

1	Arjun Panesar, "Machine Learning and AI for Healthcare", A Press.
2	Arvin Agah, "Medical applications of Artificial Systems ", CRC Press
References:	
1	Erik R. Ranschaert Sergey Morozov Paul R. Algra, "Artificial Intelligence in medical Imaging- Opportunities, Applications and Risks", Springer
2	Sergio Consoli Diego Reforgiato Recupero Milan Petković, "Data Science for Healthcare- Methodologies and Applications", Springer
3	Dac-Nhuong Le, Chung Van Le, Jolanda G. Tromp, Gia Nhu Nguyen, "Emerging technologies for health and medicine", Wiley.
4	Ton J. Cleophas • Aeilko H. Zwinderman, "Machine Learning in Medicine- Complete Overview", Springer

Assessment:

Internal Assessment: (20)

1	Assessment consists of two class tests of 20 marks each.
2	The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test
	when additional 40% syllabus is completed.
3	Duration of each test shall be one hour.
End Semester	Theory Examination: (80)
1	Question paper will comprise of total 06 questions, each carrying 20 marks.
2	Question No: 01 will be compulsory and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
3	Remaining questions will be mixed in nature and randomly selected from all the modules.
4	Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
5	Total 04 questions need to be solved.

	Artificial Intelligence and Machine Learning: Sem VIII											
Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned							
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total				
HAIMLC801	Text, Web and Social Media Analytics	04			04			04				

Course Code	Course Name	Examination Scheme								
		Theory Marks				Exam	Term	Practical	Total	
		Internal Assessment			End	Duration	Work	and		
		Test1	Test2	Avg.	Sem. Exam.	In Hours		Oral		
HAIMLC801	Text, Web and Social Media Analytics	20	20	20	80	03			100	

Со	urse Prerequisites:
Ру	thon, Data Mining
Со	urse Objectives: The course aims
1	To have a strong foundation on text, web and social media analytics.
2	To understand the complexities of extracting the text from different data sources and analysing it.
3	To enable students to solve complex real-world problems using sentiment analysis and Recommendation
	systems.
Со	urse Outcomes:
Af	ter successful completion of the course, the student will be able to:
1	Extract Information from the text and perform data pre-processing
2	Apply clustering and classification algorithms on textual data and perform prediction.
3	Apply various web mining techniques to perform mining, searching and spamming of web data.
4	Provide solutions to the emerging problems with social media using behaviour analytics and Recommendation
	systems.
5	Apply machine learning techniques to perform Sentiment Analysis on data from social media.

Module		Topics	Hours.
1.0		Introduction	06
	1.1	Introduction to Text Mining: Introduction, Algorithms for Text Mining, Future Directions	
	1.2 Information Extraction from Text: Named Entity Recognition, Relation Extract Unsupervised Information Extraction		
	1.3	Text Representation: tokenization, stemming, stop words, NER, N-gram modelling	
2.0		Clustering and Classification	10

	2.1	Text Clustering: Feature Selection and Transformation Methods, distance based	
		Clustering Algorithms, Word and Phrase based Clustering, Probabilistic document Clustering	
		-	
	2.2	Text Classification : Feature Selection, Decision tree Classifiers, Rule-based Classifiers, Probabilistic based Classifiers, Proximity based Classifiers.	
		riobabilistic based Classifiers, rioxinity based classifiers.	
	2.3	Text Modelling: Bayesian Networks, Hidden Markovian Models, Markov random Fields, Conditional Random Fields	
3.0		Web-Mining:	05
	3.1	Introduction to Web-Mining: Inverted indices and Compression, Latent Semantic Indexing, Web Search,	
	3.2	Meta Search: Using Similarity Scores, Rank Positons	
	3.3	Web Spamming: Content Spamming, Link Spamming, hiding Techniques, and Combating Spam	
4.0		Web Usage Mining:	05
	4.1	Data Collection and Pre-processing, Sources and types of Data, Data Modelling, Session and Visitor Analysis, Cluster Analysis and Visitor segmentation, Association and Correlation Analysis, Analysis of Sequential and Navigational Patterns, Classification and Prediction based on Web User Transactions.	
5.0		Social Media Mining:	05
	5.1	Introduction, Challenges, Types of social Network Graphs	
	5.2	Mining Social Media: Influence and Homophily, Behaviour Analytics, Recommendation in Social Media: Challenges, Classical recommendation Algorithms, Recommendation using Social Context, Evaluating recommendations.	
6.0		Opinion Mining and Sentiment Analysis:	08
	6.1	The problem of opinion mining,	
	6.2	Document Sentiment Classification: Supervised, Unsupervised	
	6.3	Opinion Lexicon Expansion: Dictionary based, Corpus based	
	6.4	Opinion Spam Detection : Supervised Learning, Abnormal Behaviours, Group Spam Detection.	
		₩-1-1	40
		Total	48

Textbooks:

- 1 Daniel Jurafsky and James H. Martin, "Speech and Language Processing," 3rd edition, 2020
- 2 Charu. C. Aggarwal, Cheng Xiang Zhai, Mining Text Data, Springer Science and Business Media, 2012.
- 3 BingLiu, "Web Data Mining-Exploring Hyperlinks, Contents, and Usage Data", Springer, Second Edition, 2011.

4 Reza Zafarani, Mohammad Ali Abbasiand Huan Liu, "Social Media Mining- An Introduction", Cambridge University Press, 2014

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

End Semester Theory Examination: (80)

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 Total 04 questions need to be solved.

	Artificial Intelligence and Machine Learning:Sem VII										
Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
HAIMLSBL701	AI&ML in Healthcare: Lab		04			02		02			

Course Code	Course Name	Examination Scheme							
		Theory Marks			Exam	Term	Oral	Total	
		Interna	al Assess	sment	End	Duration	Work		
		Test1	Test2	Avg.	Sem.				
					Exam.				
HAIMLSBL701	AI&ML in						50	50	100
	Healthcare: Lab						50	30	100

Со	ourse Prerequisites:
Рy	thon
Со	ourse Outcomes:
Af	ter successful completion of the course, the student will be able to:
1	Students will be able to understand computational models of AI and ML.
2	Students will be able to develop healthcare applications using appropriate computational tools.
3	Students will be able to apply appropriate models to solve specific healthcare problems.
4	Students will be able to analyze and justify the performance of specific models as applied to healthcare
	problems.
5	Students will be able to design and implement AI and ML-based healthcare applications.

Sugges	Suggested Experiments:					
Sr. No.	Name of the Experiment					
1	Collect, Clean, Integrate and Transform Healthcare Data based on specific disease.					
2	Perform Exploratory data analysis of Healthcare Data.					
3	AI for medical diagnosis based on MRI/X-ray data.					
4	Al for medical prognosis .					
5	Natural language Entity Extraction from medical reports.					
6	Predict disease risk from Patient data.					
7	Medical Reviews Analysis from social media data.					
8	Explainable AI in healthcare for model interpretation.					
9	Mini Project-Design and implement innovative web/mobile based AI application using Healthcare Data.					
10	Documentation and Presentation of Mini Project.					

Useful Links:

- 1 <u>https://www.coursera.org/learn/introduction-tensorflow?specialization=tensorflow-in-practice</u>
- 2 https://www.coursera.org/learn/convolutional-neural-networks-tensorflow?specialization=tensorflow-in-practice
- 3 <u>https://datarade.ai/data-categories/electronic-health-record-ehr-data</u>
- 4 <u>https://www.cms.gov/Medicare/E-Health/EHealthRecords</u>
- 5 <u>https://www.coursera.org/learn/tensorflow-sequences-time-series-and-prediction?specialization=tensorflow-in-practice</u>

Term Work:

- 1 Term work should consist of 8 experiments and a Mini Project.
- ² The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 3 Total 50Marks (Experiments: 30-Marks, Mini Project-15 Marks, Attendance- Theory & Practical: 05marks)

Oral & Practical exam

1 Based on the entire syllabus of **AI ML for Healthcare**